This presentation should not be considered a final statement of NIOSH policy or of any agency or individual who was involved. This information is intended for use in advancing knowledge needed to protect workers. Comments regarding this presentation may be submitted to the NIOSH Docket Office.

HUMAN VENTILATION AND BREATHING PATTERNS: NORMAL VALUES AND RANGES

David Caretti

Research Physiologist
Edgewood Chemical Biological Center
15 October 2003

Background

- Objectives
 - Define ventilatory parameters based on real-world work rates
 - Examine both non-respirator and respirator conditions
 - Establish flow rates for assessing filter/respirator performance
- Approach
 - Literature review
 - Compile/analyze data from government/nongovernment sources
 - Human use testing (lab and/or worksite)

Progress

- Literature Search
 - Collected > 100 articles
 - Respirator articles; breathing "resistance" papers
 - Occupational studies; lab investigations
 - Speech ventilation; coughing and sneezing flow rates
 - Article reviews in-progress
- Data Compilation
 - Initial collection of raw flow rate data from ECBC and UMCP; additional sources TBD
 - Current data formatted for analysis
- Human Use Testing
 - Pilot testing of speech flow rates with respirator initiated late
 September 2003

Occupational Literature Review

Citation	Test-type	Tasks	Ventilation Rate (L [?] min ⁻¹)
Kurumatani <i>et. al.</i> (1992)	Worksite	Felling trees	22.3 – 37.8
Wakui <i>et. al.</i> (2002)	Worksite	Nursing home care (day & night shifts)	13 (day) 13.8 (night)
Gallagher and Hamrick (1992)	Simulated	Lifting of mine materials	21 – 27
Gunn <i>et. al.</i> (2002)	Simulated	a) Walkingb) Sweepingc) Window cleaningd) Vacuuminge) Mowing	a) 26.3 ± 5.3 b) 22.5 ± 4.0 c) 25.0 ± 4.5 d) 19.8 ± 3.5 e) 35.0 ± 5.5
Bridger <i>et. al.</i> (1997)	Simulated	Shoveling sand	64.1 ± 16.1 63.5 ± 13.6
Hagen <i>et. al.</i> (1993)	Worksite	Motor-manual wood cutting	42.5 ± 7.5
Smolander et. al. (1995)	Worksite (controlled)	Manual snow clearing	60.5 ± 11.3 65.8 ± 11.3

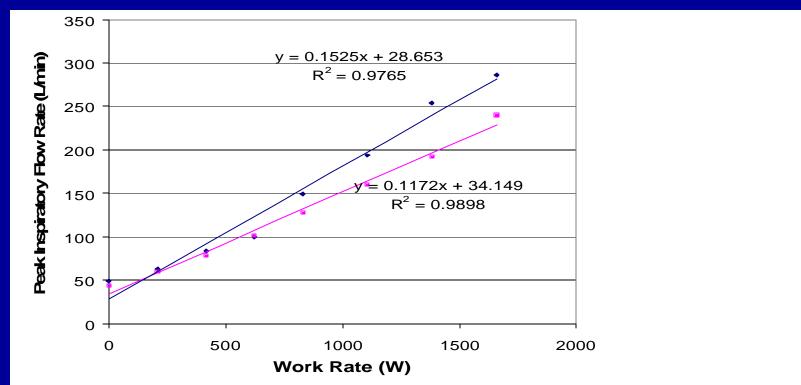
Occupational Literature Review: Respirator Use

Citation	Test-type	Respirator	Tasks	Ventilation Rate (L? min-1)	
Sothmann <i>et. al.</i> (1992)	Worksite	SCBA	Fire-suppression	57.0 ± 19.3	
Lusa <i>et. al.</i> (1993)	Simulated	SCBA	Smoke-diving (in heat)	54 ± 10	
Louhevaara et. al. (1985)	Worksite(s)	a) Half-mask w/dust filters	a) Building demolition	a) 24 – 48	
		b) Half/full-masks w/dust & gas filters	b) Foundry work	b) 16 – 33	
		c) Air-line (full mask, pressure demand type)	c) Sandblasting	c) 20 – 27.5	
		d) Air-line (half- mask, demand type)	d) Metal spraying	d) 17.5	
		e) SCBA	e) Smog-diving, repair & rescue	e) 45 – 70	

Laboratory Testing Review: Applied Resistances

Citation	Test-type	Resistance Condition	Tasks	Ventilation Rate (L? min-1)
Jette et al. (1990)	Progressive exercise	APR w/different resistances	Treadmill walk to exhaustion	101.8 \pm 16.3 to 132.7 \pm 23.6
Louhevaara et. al. (1985)	Progressive exercise	SCBA	Treadmill walk	19 - 62
Harber <i>et al.</i> (1988)	Constant rate exercise	Single-use acid-mist cartridge	Different intensity treadmill walks	11.9 ± 2.6 to 53.2 ± 13.7
Lerman <i>et al.</i> (1983)	Constant rate exercise	"Facemask" w/different resistances	Exhaustive run @ 80% of max	87.4 ± 3.5 to 106.0 ± 4.3
Johnson <i>et al.</i> (1997)	Constant rate exercise	APR w/different resistances	Exhaustive walk @ 85% of max	49.7 ± 17.6 to 77.65 ± 30.0
Harms <i>et al.</i> (2000)	Constant rate exercise	Mesh screens (3 – 7 cmH ₂ O/L/s)	Exhaustive cycling @ 90% of max	164.0 ± 6.5

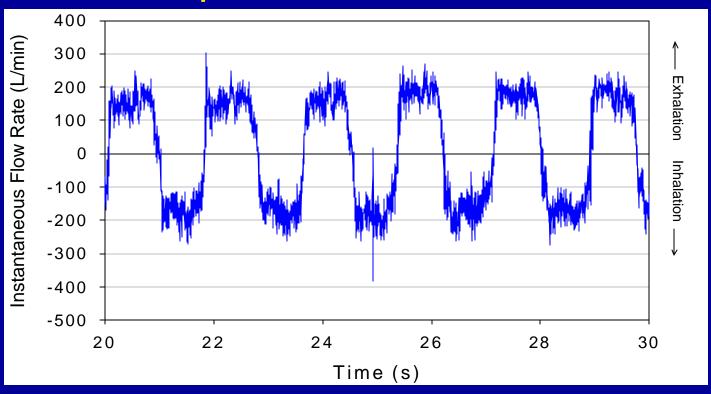
Laboratory Testing Review: Applied Resistances


Citation	Test-type	Resistance Condition	Tasks	Ventilation Rate (L? min-1)
Jette <i>et al.</i> (1990)	Progressive exercise	APR w/different resistances	Treadmill walk to exhaustion	101.8 ± 16.3 to 132.7 ± 23.6
Louhevaara et. al. (1985)	Progressive exercise	SCBA	Treadmill walk	19 - 62
Harber <i>et al.</i> (1988)	Constant rate exercise	Single-use acid-mist cartridge	Different intensity treadmill walks	11.9 ± 2.6 to 53.2 ± 13.7
Lerman <i>et al.</i> (1983)	Constant rate exercise	"Facemask" w/different resistances	Exhaustive run @ 80% of max	87.4 ± 3.5 to 106.0 ± 4.3
Johnson <i>et al.</i> (1997)	Constant rate exercise	APR w/different resistances	Exhaustive walk @ 85% of max	49.7 ± 17.6 to 77.65 ± 30.0
Harms <i>et al.</i> (2000)	Constant rate exercise	Mesh screens (3 – 7 cmH ₂ O/L/s)	Exhaustive cycling @ 90% of max	164.0 ± 6.5

PIFR Literature

- PIFR = Peak Inspiratory Flow Rate
- Limited Database
 - PIFR decreases as resistance increases for both constant-rate exercise and rest

Data Compilation


- UMCP data set Coyne (2001):
- Breath-by-breath values & minute averages at 5 work rates
 - Inspiratory & expiratory time (T_I, T_E)
 - Tidal volume (V_T)
 - Minute ventilation (V_I & V_E)
 - Respiratory rate (f)
 - Mean inspiratory flow rate (V_T / T_I)
 - Duty cycle (T_I/T_{TOT})
 - Peak inspiratory & expiratory flow rate (PIFR, PEFR)
 - PIFR/V_I and PEFR/V_E
- Breathing waveform shapes
- With and without inhalation resistances
- Breath-by-breath variability

Data Compilation

TI	TE	f	VT	VI	VT/TI	TI/TTOT	PIFR	PEFR	PIFR/VE	PEFR/VE
(s)	(s)	(1/min)	(L)	(L/min)	(L/s)		(L/min)	(L/min)		
0.94	0.82	34.01	2.16	73.52	2.30	0.53	271.49	302.67	3.69	4.12
1.00	0.84	32.72	2.35	76.94	2.36	0.54	262.26	243.96	3.41	3.17
0.89	0.82	34.93	2.16	75.45	2.42	0.52	383.51	268.75	5.08	3.56
0.86	0.92	33.79	2.42	81.92	2.82	0.48	263.58	245.27	3.22	2.99
0.89	0.89	33.57	2.43	81.58	2.72	0.50	275.44	245.27	3.38	3.01

Project Milestones

Complete literature review

Final flow rate recommendations

	Complete illerature review	Oct 03
•	Provide flow rates for NIOSH sponsored high flow filter testing	Nov 03
•	Draft report of literature review	Jan 04
•	Develop/implement data-gap testing	Jan 04
•	Complete compiled data analysis	Mar 04

Oct 03

Aug 04